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Abstract 
 

Agriculture, vital for global sustenance, faces unprecedented challenges such as climate change, soil degradation and various 

abiotic stresses. This review explores the potential of silver nanoparticles (AgNPs) in addressing agricultural challenges, 

focusing on heavy metal contamination, salinity, drought and temperature stress. AgNPs, known for their unique properties, 

demonstrate effectiveness in adsorbing heavy metals and reducing their bioavailability in soils. Their application in 

nanocomposites and nano fertilizers ensures sustained remediation effects and enhanced soil microbial activity. Under heavy 

metal stress, AgNPs positively impact plant physiology, enhancing antioxidant enzyme activities and promoting root 

development, shoot biomass and overall plant growth. Additionally, AgNPs contribute to mitigating salinity stress by 

modulating carbohydrates and protein synthesis and improving antioxidant enzyme activity. Noteworthy is their ability to 

increase seed germination in salt-stress conditions. AgNPs also show promise in alleviating drought stress, preserving water 

balance, and enhancing growth traits. Furthermore, AgNPs exhibit effectiveness in mitigating temperature stress, and 

improving plant parameters in high-temperature conditions. Their versatile role in influencing plant development makes them 

promising tools for sustainable and resilient crop production. However, careful consideration of potential risks, including 

ecosystem accumulation and unintended consequences, is imperative. Ongoing research and thorough risk assessments are 

crucial for the safe and effective application of AgNPs in diverse environmental conditions, ensuring their contribution to 

sustainable agriculture and environmental remediation. © 2024 Friends Science Publishers 
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Introduction 
 

Agriculture, the backbone of many developing economies, is 

facing an extraordinary challenge as the global population is 

projected to reach nine billion by 2050. The pressing issues 

of climate change, soil degradation, nutrient deficiencies, 

disease outbreaks, urbanization, pollution and 

industrialization threaten the sustainability of agricultural 

practices and, consequently, global food production 

(Godfray and Garnett 2014; Manjunatha et al. 2016; Fatima 

et al. 2020). Similarly, the impact of heavy metals, drought, 

and temperature fluctuations in agriculture disrupt plant 

growth, soil health, and overall crop productivity, 

posing significant challenges to global food security 

(Zulfiqar et al. 2019; Jalil and Ansari 2020). Meeting the 

demands of this growing population within the constraints of 

limited resources and a compromised environment requires 

innovative solutions. The application of nanotechnology in 

agriculture emerges as a promising avenue to address these 

challenges. Nanotechnology involves the manipulation and 

application of matter at the nanoscale, with nanoparticles 

ranging from 0.1 to 100 nm (Singh and Kumar 2023). 

Among these nanoparticles, silver nanoparticles (AgNPs), 

with their unique physical, chemical, and biological 

properties, have gained prominence in various industries, 

including medicine, food, healthcare, and consumer goods 

(Gurunathan et al. 2015). However, the synthesis of AgNPs 

is critical to their effectiveness in different applications. 

Traditional physical and chemical methods are often 

expensive and risky. In response, researchers have turned to 

biologically synthesized AgNPs, utilizing natural resources 

like plant leaves, stems, bark, and roots for novel metals such 

as platinum, gold, and silver (Vadakkan et al. 2024). This 

eco-friendly approach not only ensures excellent production, 

solubility, and stability but also aligns with the imperative of 

environmental sustainability (Gurunathan et al. 2015). The 

connection between nanotechnology and agriculture 

becomes particularly relevant in the face of rapidly changing 
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environmental conditions and an expanding population. 

Abiotic stressors, intensified by climate change, pose a 

significant threat to global food security. These stressors 

encompass a range of challenges, including altered growth 

and development of plants, disruptions in gas exchange rates, 

and the exacerbation of abiotic conditions (Latef et al. 2017; 

Kim et al. 2019). In this context, AgNPs present themselves 

as potential game-changers. Not only do they possess 

distinctive physicochemical properties, but they also exhibit 

antibacterial actions, setting them apart from other 

nanoparticles (Mohamed et al. 2017). The ability of AgNPs 

to address multiple challenges simultaneously makes them a 

compelling solution for enhancing agricultural sustainability. 

This review delves into how abiotic stressors challenge 

agriculture and explores the potential of AgNPs in mitigating 

these challenges. 

 

Impacts of abiotic stress on plants 

 

Abiotic stress encompasses a range of environmental factors 

that can adversely affect plant growth, development, and 

overall well-being. These stressors include, but are not limited 

to, extremes in temperature, salinity, heavy metal 

accumulation and drought (Table 1; Fig. 1–2). Such abiotic 

stresses have become a focal point of research due to their 

substantial impacts on agricultural productivity and ecosystem 

health. In understanding the multifaceted impacts of abiotic 

stress on plants, researchers aim to develop strategies for crop 

improvement, environmental sustainability and resilience in 

the face of ongoing climate challenges. These efforts are 

crucial for ensuring the future health and productivity of plant 

ecosystems amid a changing global environment. 

In recent times, the buildup of heavy metals in soil has 

become a serious worry, especially in developing countries 

experiencing rapid urbanization and industrialization 

(Zhao et al. 2015; Zhou et al. 2017; Yang et al. 2020). This 

concern has gained global attention due to its potential 

impact on the long-term health of agroecosystems, affecting 

around 20% of the world's land and disrupting global food 

productivity (Alekseenko et al. 2018; Wang et al. 2018). 

Heavy metal contamination affects about 2.5 billion hectares 

of agricultural land worldwide, with varying concentrations 

based on regional industrial and agricultural activities (Feng 

et al. 2019). Even trace amounts of these toxic metals can be 

harmful to various life forms, raising concerns about 

phytotoxicity (Ahlam et al. 2021). The accumulation of 

heavy metals in plant cells can result in growth inhibition, 

plant mortality, and the subsequent release of these metals 

into the environment through volatilization. This, in turn, 

affects various plant physiological processes, morphological 

characteristics, biochemical composition, and ultimately 

reduces crop yields (Dixit et al. 2015). Different crops, 

including rice (Oryza sativa L.), wheat (Triticum aestivum L.), 

barley (Hordeum vulgare L.) and corn (Zea mays L.) are 

susceptible to heavy metal contamination with varying 

impacts on their growth due to disruptions in essential 

physiological processes and nutrient uptake 

mechanisms (Ali et al. 2013; Ditta et al. 2021). The severity 

of these impacts depends on factors such as the type of 

metal, its concentration, and the duration of exposure. For 

example, cadmium has been shown to stunt root and shoot 

growth in wheat and inhibit seed germination, while arsenic 

uptake in rice can affect root elongation and nutrient 

transport, leading to reduced grain yield (Shahid et al. 2016). 

Additionally, heavy metals induce oxidative stress in plants, 

damaging cellular structures, reducing chlorophyll content, 

and disrupting photosynthesis rates (Salam et al. 2024). The 

economic ramifications of heavy metal contamination are 

significant, as crops with elevated metal levels may exhibit 

reduced nutritional value and an increased potential for toxic 

effects on consumers, especially when consumed by 

livestock or humans (Rai et al. 2023). 

Salt stress poses a pervasive and significant threat to 

plant health, impacting plant yield and survival. Soil 

salinity, a major environmental hazard globally, affects both 

flooded and dry land crops, posing a serious challenge to 

agriculture (Farooq et al. 2015; Sultan et al. 2023). Salinity 

stress arises from natural processes like rock weathering and 

fluctuations in the water table depth. The soluble salts released 

through rock weathering dissolve in water and soil solution, 

impacting plant growth and soil structure based on the shifting 

water table (Liu et al. 2023). Environmental factors, soil depth, 

temperature, light, timing, and irrigation depth influence 

salinity tolerance. Dry and high-temperature conditions make 

plants more susceptible to saline conditions due to increased 

evapotranspiration rates (Giordano et al. 2021). Elevated 

concentrations of salt in the soil result in metabolic and 

physiological issues, including cellular particle imbalance, 

the generation of reactive oxygen species (ROS) and 

damage to biomolecules, leading to programmed cell death 

(Tomar et al. 2021). The economic consequences of salt 

stress are substantial, with 1.5 million hectares of arable 

land lost each year due to salinization and sodification, 

affecting a staggering 1.125 billion hectares, of which 

76 million are solely influenced by human activities (Abou-

Zeid and Ismail 2018). Addressing and mitigating the 

impacts of salt stress are urgent needs to ensure sustainable 

food production and economic stability. 

Climate change and global warming have given rise to 

a multifaceted challenge, with the water crisis standing out 

as a significant problem. Water, essential for plant health 

due to its role in nutrient delivery, becomes critical in the 

face of climate-induced water scarcity, leading to drought 

stress (Mujumdar 2013). Drought stress occurs when there 

is a reduction in the water supply to the roots or a significant 

increase in the rate of transpiration from the leaves, 

prevalent in semiarid and arid conditions. Projections by 

the Intergovernmental Panel on Climate Change (IPCC) 

paint a concerning picture, with the Earth's average 

temperature expected to rise between 1.8 to 4.0°C by 

2100, leading to widespread drought occurrences across 

the globe (Ozturk et al. 2020). 
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Table 1: Effects of different abiotic stresses on some varieties of crops 

 
Plant/crop  Abiotic stress Impacts on plant/crop References 

Oryza sativa Heavy metal stress Inhibits root and shoot growth Li et al. (2019a, b); Chen et al. (2020) 

Triticum aestivum  Heavy metal stress Reduces chlorophyll content and photosynthesis rate Iqbal et al. (2017); Khan et al. (2020) 

Solanum lycopersicum  Heavy metal stress Disrupts root development and impairs fruit ripening Kaur and Bakshi (2018); Bhuiyan et al. (2021) 

Spinacia oleracea  Heavy metal stress Accumulates in leaves and affects nutrient uptake Sheoran and Sheoran (2017); Verma et al. (2021) 

Zea mays Heavy metal stress Alters enzyme activities and hampers growth Gupta et al. (2023) 

  Daucus carota  Heavy metal stress It affects root development and decreases biomass Khan et al. (2017) 

Solanum tuberosum  Heavy metal stress Reduces tuber yield and increases oxidative stress Prasad et al. (2022) 

Zea mays  Salt stress Impaired photosynthesis and chlorophyll content, Decreased yield and kernel weight Han et al. (2019) 

Solanum lycopersicum  Salt stress Decreased fruit yield and quality, Hindered nutrient uptake and assimilation Zhang et al. (2021);  

Cucumis sativus Salt stress Reduced seed germination and growth, Impaired water and nutrient transport Zhang et al. (2020) 

Capsicum annuum Salt stress Decreased fruit yield and size, altered mineral nutrient concentrations Arrowsmith et al. (2012) 

Lactuca sativa Salt stress Impaired nutrient absorption and translocation Breś et al. (2022); Naz et al. (2024) 

Secale cereal Salt stress Stunted growth and decreased tiller number impaired nutrient transport in roots Moradi and Sharifi (2020) 

Cotton  Drought stress Drought causes a reduction of photosynthesis and eventually stunts plant growth Zafar et al. (2023) 

Brassica rapa Drought stress Inhibit the growth and physio-biochemical attributes Hasnain et al. (2023) 

Cicer arietinum L. Drought stress Hinder the growth and limiting the yield by impairing pistil function and reducing pollen viability Pappula et al. (2024) 

Vegetable plants  Heat stress Heat stress also reduces seedling growth, root growth and causes significant yield losses Saeed et al. (2023) 

Solanum lycopersicum Heat stress affects the rate of fruit setting and production  Cappetta et al. (2021) 

Brassica rapa  Heat stress Reduce photosynthesis & increase respiration, which in turn reduces assimilation and 

causes substantial yield loss  

Hassan et al. (2021) 
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Fig. 1: Biological role of AgNPs in different fields 

 

 
 

Fig. 2: Growth, physio-morphological and enzymatic changes in agricultural crops under different abiotic stresses on agriculture 
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The impact of drought stress on plants is evident in the 

wilting of plants, reduction in leaf size, increased leaf fall, 

and diminished transpiration, where plants lose water 

through their leaves (Fghire et al. 2015). Drought stress 

triggers a cascade of plant responses, involving changes in 

growth and yield characteristics, alterations in the levels and 

activities of protective antioxidants, and adjustments in the 

amounts of protective metabolites and proteins (Seleiman et 

al. 2021; Idrees et al. 2024). Aquaporins (AQPs), 

membrane channels activated during drought, partially 

control this impact by facilitating water permeability (Hasan 

et al. 2021). Developing drought-tolerant cultivars becomes 

imperative to ensure food security (Hasan et al. 2020). 

Plants, being stationary, are susceptible to temperature 

stress that impacts both their growth and surroundings. 

Temperature extremes disturb the delicate balance of plant 

physiology, leading to substantial reductions in crop yields 

(Kai and Iba 2014). High-temperature stress during the 

reproductive stage can lead to a decrease in grain number 

and accelerate the time it takes for grains to fill, while frost 

during reproductive stages can lead to sterility and abortion 

of formed grains (Barlow et al. 2015). The intricacies of 

temperature stress are further accentuated under conditions 

of high vapor pressure deficits, affecting pollen viability 

crucial for successful reproduction (Lv et al. 2024). With 

increased temperature stress on major grain crops in the 

twenty-first century, a decline in grain yields becomes a 

likely trajectory (Hatfield and Prueger 2011). 

 

The impacts of AgNPs on plants under abiotic stress 

 

As the scientific community delves deeper into the realm of 

nanotechnology, the co-evolution of nanoparticles (NPs) 

continues to offer promising solutions for enhancing crop 

variety and addressing agricultural challenges. AgNPs, with 

their unique properties, emerge as dominant players in this 

field (Chouhan 2018). The non-toxic and chemically stable 

nature of AgNPs makes them biocompatible precursors for 

influencing specific traits responsible for overall plant 

development (Wahid et al. 2020a, b). Upon interacting with 

plants, nanoparticles (NPs) traverse the plant structure via the 

root junction and wound regions, penetrating both the cell 

wall and cell membrane of the root epidermis. This 

penetration is facilitated by diverse mechanisms such as 

carrier proteins, endocytosis, pore formation or 

plasmodesmata. Following this, an intricate series of events 

ensues, enabling the NPs to access the plant vascular bundle 

(xylem) through either the symplast or apoplast pathway 

(Pèrez-de-Luque 2017). Within the vascular bundle, NPs 

accumulate in cellular or subcellular organelles and undergo 

symplastic movement to reach the stele, ultimately being 

translocated to the leaves (Gohari et al. 2024). Furthermore, 

NPs possess the capability to infiltrate the cell cytoplasm by 

traversing through structures like cuticles, stomata, 

hydathodes, and trichomes on leaves. Once in the cytoplasm, 

these NPs may interact with various cytoplasmic organelles, 

potentially disrupting local metabolic activities (Rajput et al. 

2020a, b). In addition, NPs may directly absorb into seeds by 

diffusing through the cotyledon and into the coat through 

parenchymatic intercellular gaps (Tripathi et al. 2017). 

According to Almutairi (2016), the effects of salt 

stress on tomato plant seed germination and seedling growth 

were significantly reduced by exposure to AgNPs. After 

exposure to AgNPs under NaCl stress, the germination 

percentage, germination rate, root length, and seedling fresh 

and dry weight of tomato all improved. Semi-quantitative 

reverse transcriptase polymerase chain reaction (RT-PCR) 

was used to look at the expression of salt stress genes. Four 

of the genes for salt stress under examination—AREB, 

MAPK2, P5CS, and CRK1—were upregulated by AgNPs 

during salt stress, while three other genes—TAS14, DDF2, 

and ZFHD1—were down regulated. The gene expression 

patterns linked to exposure to AgNPs also point to the 

possibility that AgNPs may be involved in stress responses, 

suggesting that they could be effective for enhancing plant 

tolerance to salinity. 

Salinity stress, a global issue affecting crop growth 

and yield, sees positive responses to AgNP application. 

AgNPs, when applied under salinity stress, modulate 

carbohydrates and protein synthesis, improve plant growth, 

and enhance the activity of antioxidant enzymes, 

contributing to the reduction of salinity impact through ROS 

detoxification (Ghosh et al. 2016; Table 2; Fig. 3) the 

imbalance of ions caused by salt stress disrupts the 

equilibrium within plant cells, resulting in the buildup of 

detrimental ions like sodium. AgNPs have the potential to 

preserve ion homeostasis by overseeing the transport of ions 

across cell membranes. This regulatory role contributes to 

mitigating the adverse impacts of salt stress on plants 

(Rosário et al. 2021). Without disrupting cellular processes 

and gene expression, NPs would undoubtedly be ineffective. 

This is because salinity stress modifies gene expression, 

which in turn affects plant growth by altering the expression 

of numerous genes involved in the various cell components 

and their byproducts. In order to conduct research in this 

field, microRNA expression in cells treated with AgNPs 

was analyzed (Kumar et al. 2013). These researchers' 

findings indicate that the NPs had an impact on the 

expression of miR398 and miR408, which control the 

germination of seeds, the development of roots and 

seedlings, and the function of antioxidants and free radical 

scavengers. It should be highlighted that the factors above 

are inhibited by increased expression of microRNA. It is 

widely acknowledged that plants respond to salinity stress, 

by generating ROS. To counteract the surplus ROS in cells 

subjected to salinity stress, plants deploy antioxidant 

enzymes (You and Chan 2015). Numerous studies have 

illustrated the ability of AgNPs to enhance the levels of 

antioxidant enzymes (Gaafar et al. 2020; González-García 

et al. 2021). According to these researchers, certain NPs act 

as specific antioxidant enzymes, assisting plants in 

overcoming the oxidative challenges they face.  
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In a study conducted by Khan et al. (2020), the impact 

of seed priming with AgNPs at different concentrations was 

investigated on pearl millet (Pennisetum glaucum L.) under 

salinity stress conditions (0, 120 and 150 mM NaCl). The 

results indicated a substantial enhancement in the plant's 

developmental features due to the presence of NPs. This 

Table 2: Role of AgNPs for alleviation of different abiotic stresses in plants 

 
Species Abiotic stress  Treatment of 

AgNPs 

Effects References 

Triticum aestivum Salt stress  10 mM /L Ag-NPs increased fresh and dry weight, Improved germination and growth of wheat seedlings, 

total chlorophyll content, soluble sugar content and antioxidant enzymes under salt stress. 

Mohamed et al. 

(2017) 

Lycopersicon 

esculentum 

Salt stress 75 mg/L Ag-NPs enhanced CAT and POX activity under salinity stress, Ag-NPs also enhance 

germination under salinity stress 

Almutairi (2016) 

Thymus vulgaris and 

T. daenensis 

Salt stress 0–10 mm/L Ag-NPs increase germination percentage, shoot and root length, and seed vigor in under salinity 

stress 

Ghavam (2018) 

Lycopersicon 

esculentum 

Salt stress 20 mg/L Ag-NPs increase percentage plant survival at different levels of salinity.  Younes and Nassef 

(2015) 

Ocimum basilicum Salt stress 40 mg/L Ag-NPs enhance germination percentage and improved resistance to salinity Darvishzadeh (2015) 

Riccinus communis Salt stress 100 mg/L Ag-NPs promoted the activities of SOD and POX under salt stress Yasur and Rani 

(2013) 

Cuminum cyminum 

L. 

Salt stress 100 mg /L Enhanced germination percentage, germination speed and vigor Ekhtiyari et al. 

(2011) 

Lathyrus Sativus L.  Salt stress 5, 10 ppm  Improve shoot and root length, germination percentage, seedling fresh and dry weight Hojjat and Ganjali 

(2017) 

Triticum aestivum L. 

At 35-40°C 

Temperature stress 25, 50, 75 and 

100 mg/L  

Improved root length, shoot length, root number, fresh weight and dry weight Iqbal et al. (2017) 

Lens esculenta  Drought stress  10, 20 40 µg/L Improved germination percentage, root & shoot length.  Hojjat and Kamyab 

(2016) 

Lupinus luteus L. Heavy metal stress 25 mg/kg Improve GPX activity and metallothioneins expression  Jaskulak et al. (2019) 

Triticum aestivum Heavy metal stress 50 mg/kg AgNPs can adsorb and sequester Cd ions in soil, reducing its bioavailability and uptake by 

wheat, thereby mitigating Cd-induced toxicity 

Smith et al. (2022) 

Hordeum vulgare Heavy metal stress 15 mg/L AgNPs have been shown to enhance the antioxidative defense system in barley, reducing Hg-

induced oxidative stress and promoting plant growth 

Johnson and Lee 

(2021) 

Oryza sativa Heavy metal stress 25 mg/L Application of AgNPs leads to improved root morphology and nutrient uptake in rice, reducing 

Pb toxicity and enhancing overall plant biomass 

Williams and Brown 

(2020) 

Spinacia oleracea Heavy metal stress 0-50 mh/L AgNPs reduce Cd uptake in spinach, lowering Cd-induced toxicity and improving overall plant 

health               

Bisi-Johnson et al. 

(2023)    

 

 
 

Fig. 3: Role of AgNPs at cellular, molecular and biochemical levels in crops for salt stress management 
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improvement was attributed to a decrease in the sodium-to-

potassium ratio and an increase in the activity of antioxidant 

enzymes such as glutathione peroxidase (GPX), catalase 

(CAT), and superoxide dismutase (SOD). According to 

research conducted by Sami et al. (2020), one of the key 

mechanisms through which AgNPs at low concentrations 

positively influence plant growth is by enhancing 

antioxidant enzyme activity. According to Abou-Zeid and 

Ismail (2018), AgNPs were found to affect wheat 

germination and grain yield under salt stress by modifying 

photosynthetic efficiency and plant hormones as the levels 

of abscisic acid (ABA decreased and those of 6-

benzylaminopurine, 1-naphthalene acetic acid, and indole-3-

butyric acid increased. 

In addressing the persistent challenge of heavy 

metal contamination in agriculture, the AgNPs have 

emerged as promising remedies. AgNPs have demonstrated 

effectiveness in adsorbing and sequestering heavy metals such 

as Pb, Cd, and Cu from soil environments (Yan et al. 2020; 

Ghafari et al. 2023). Their high surface area and reactivity 

allow the formation of stable complexes with heavy metal 

ions, thereby reducing their bioavailability and mobility in the 

soil (Li et al. 2019a, b). AgNPs, known for their versatility, 

can be incorporated into various delivery systems like 

nanocomposites and nano fertilizers, ensuring efficient and 

controlled release in soil environments (Liu et al. 2019). These 

delivery systems contribute to sustained remediation effects, 

providing prolonged exposure to heavy metal-contaminated 

soils (Ghafari et al. 2021). Furthermore, AgNPs enhance soil 

microbial activity, crucial for nutrient cycling and soil health, 

promoting beneficial microbial populations and mitigating the 

adverse effects of heavy metals on soil biodiversity (Rajput et 

al. 2020c). Under heavy metal stress, AgNPs showcase a 

positive impact on plant physiology by enhancing antioxidant 

enzyme activities, including SOD, CAT and POD (Fig. 4). 

These enzymes play a crucial role in mitigating oxidative 

stress caused by heavy metal exposure (Ma et al. 2013). 

Additionally, AgNPs improve root development, increase 

shoot biomass, and stimulate overall plant growth, ultimately 

leading to improved crop yields in metal-contaminated 

environments (Tripathi et al. 2021). 

AgNPs contribute to mitigating heavy metal stress in 

plants by reducing oxidative stress. Heavy metals generate 

ROS in plant tissues, leading to oxidative damage and cell 

death. AgNPs, with their strong antioxidant properties, can 

scavenge ROS, protecting plant cells from damage and 

maintaining cellular homeostasis (Yadav et al. 2020). The 

positive effects of AgNPs extend beyond soil health when 

plants absorb them through their roots. AgNPs can undergo 

structural modifications within plant tissues, influencing the 

activity of enzymes involved in oxidative stress and 

activating the plant's defense system (Montes et al. 2017). 

This ability induces the generation of ROS at the cellular 

level, triggering secondary signaling pathways and leading 

to the transcriptional regulation of secondary metabolism 

(Marslin et al. 2017). 

The role of AgNPs in alleviating drought stress has 

also been explored (Fig. 5). The application of AgNPs 

shows promise in preserving water balance in plants 

subjected to drought stress, leading to improved growth 

traits, including increased germination rate and seedling 

biomass (Hojjat and Ganjali 2016). In wheat plants, AgNPs 

have been found to enhance drought tolerance by facilitating 

better nutrient absorption and water retention (Ahmed et al. 

2021). Exploring the potential of AgNPs under drought 

stress further emphasizes their role in preserving water 

balance in plants and improving growth traits, including 

increased germination rate and seedling biomass (Hojjat and 

Kamyab 2017). In the realm of plant biology, the use of 

nanomaterials (NMs) finds diverse applications, extending 

from seed modification to in vitro plant tissue culture 

technologies (Mohamed and Kumar 2016). AgNPs emerge 

as significant players in alleviating drought stress, as 

depicted in Fig. 5, the interaction of AgNPs with cell 

membranes, specifically in plant roots, can lead to 

alterations in membrane structure and permeability. This 

modification facilitates a more efficient uptake of water, 

contributing to enhanced water absorption by plants. This 

improved water uptake plays a crucial role in enabling 

plants to sustain hydration levels and better withstand 

drought conditions (Ali et al. 2019). When plants absorb 

AgNPs from the soil through their roots, an active transport 

mechanism via the xylem comes into play (Tripathi et al. 

2017). Within plant tissues, AgNPs may undergo structural 

modifications, forming complex compounds with other 

molecules or nutrients, or they may retain their nanomaterial 

properties (Dimkpa and Bindraban 2017). NPs, including 

AgNPs, appear to influence the activity of enzymes 

involved in oxidative stress, potentially activating the plant's 

defense system (Montes et al. 2017). The ability of AgNPs 

to induce the generation of ROS at the cellular level initiates 

secondary signaling pathways, leading to the transcriptional 

 
 

Fig. 4: Schematic role of AgNPs in reducing heavy metals stress 

in plants 
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regulation of secondary metabolism (Marslin et al. 2017). 

Notably, the impact of NMs on plants follows a biphasic 

dose-response pattern termed "hormesis", where low doses 

stimulate plant responses, while high doses inhibit them 

(Agathokleous et al. 2019). This underscores the potential 

of nanotechnology to offer innovative solutions in 

enhancing plant resilience and mitigating the adverse effects 

of environmental stressors like drought. 

Beyond heavy metal and salt stress, AgNPs 

demonstrate effectiveness in mitigating temperature stress 

(Fig. 6). In an experiment on wheat, AgNPs were applied to 

alleviate the adverse effects of high temperature. The results 

showed improvements in plant parameters such as shoot and 

root length, number of leaves and overall plant weight (Iqbal 

et al. 2017). Temperature stress can impact diverse metabolic 

pathways within plants. The presence of AgNPs may exert 

an influence on the regulation of these pathways, facilitating 

adaptations in plant metabolism to better align with the 

challenges posed by temperature stress (Khalil et al. 2022). 

Elevated temperatures, particularly during temperature stress, 

can cause protein denaturation in plant cells. AgNPs have the 

potential to trigger the expression of heat shock proteins 

(HSPs), serving as molecular chaperones that aid in the 

correct folding and stabilization of proteins when confronted 

with stress conditions (Magesky et al. 2017). 

The AgNPs emerge as versatile tools with a 

remarkable capacity to influence plant development and 

alleviate various environmental stresses. Their application in 

agriculture holds promise for sustainable and resilient crop 

production. However, ongoing research is essential to delve 

deeper into the biochemical, molecular, and physiological 

mechanisms underlying their effects. As co-evolution of 

nanotechnology progresses, the judicious use of AgNPs has 

the potential to revolutionize agricultural practices, 

contributing to low-input sustainable agriculture for both 

food and non-food crops (Etesami and Jeong 2018). In 

conclusion, the multifaceted role of AgNPs in alleviating 

various stresses, from heavy metal contamination to salinity 

and drought, underscores their potential in sustainable 

agriculture. These nanoparticles offer a promising avenue 

for enhancing plant resilience, improving crop yields, and 

contributing to environmental remediation. However, their 

use necessitates careful consideration of potential risks 

associated with ecosystem accumulation and unintended 

consequences on non-target organisms. Ongoing research 

and thorough risk assessments are crucial to ensuring the 

safe and effective application of AgNPs in diverse 

environmental conditions. 

 

Conclusion 
 

The integration of AgNPs into agriculture holds immense 

promise for addressing critical challenges such as heavy 

metal contamination, salinity stress, drought, and 

temperature fluctuations. AgNPs exhibit exceptional 

efficacy in adsorbing heavy metals from soil, enhancing soil 

microbial activity, and improving plant resilience. Their role 

in modulating carbohydrate and protein synthesis, 

stimulating antioxidant defense mechanisms, and promoting 

seed germination underscores their versatility in mitigating 

salinity stress. Additionally, AgNPs demonstrate significant 

potential in alleviating drought stress by preserving water 

balance in plants and enhancing nutrient absorption. When 

applied under temperature stress, AgNPs contribute to 

improved plant parameters, while AgNPs offer multifaceted 

benefits in sustainable agriculture; however, the careful 

consideration of potential ecological risks and unintended 

consequences is crucial. Ongoing research, coupled with 

comprehensive risk assessments, is imperative to ensure the 

safe and effective application of AgNPs, paving the way for 

transformative solutions in global crop production and 

environmental health. 

 
 

Fig. 5: Drought stress management in plants by AgNps 

(Alabdallah et al. 2021) 

 

 
 

Fig. 6: Effects of temperature stress in plants and management 

through AgNps 
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